
Appendix A 

This Appendix explains the process of updating LANDFIRE vegetation geodata, calculating 
ecological departure, and simulating climate change effects using temporal multipliers in state-
and-transition models.   
 
Mapping Pre-settlement Vegetation and Current Vegetation 
 
The foundation of ecological departure mapping is the stratification of a landscape via 
biophysical settings, or potential vegetation, as defined by LANDFIRE (www.landfire.gov; 
Rollins2009).  Biophysical settings are conceptually similar to ecological sites from Natural 
Resource Conservation Service (NRCS) soil surveys, except the biophysical settings often 
represent groups of ecological sites dominated by the same upper-layer species.  The NRCS 
defines ecological site as “a distinctive kind of land with specific physical characteristics that 
differs from other kinds on land in its ability to produce a distinctive kind and amount of 
vegetation.” (National Forestry Manual, 
www.nrcs.usda.gov/technical/ECS/forest/2002_nfm_complete.pdf).   
 
For each biophysical setting (a.k.a. ecological system), current vegetation was also mapped as 
the natural succession classes and any uncharacteristic classes.  Natural succession classes 
typically were based on the standard LANDFIRE model of up to five classes ranging from early- 
to mid- to late-development; mid- and late-development classes may be expressed as open or 
closed canopy.  Uncharacteristic classes included the presence of uncharacteristic native species 
(e.g. loss of aspen regeneration, loss of aspen clones, encroachment of pinyon or juniper into 
shrublands and wet meadows, loss of the herbaceous understory of shrublands, and entrenchment 
and drop of the water table in riparian systems and wet meadows) and uncharacteristic exotic 
species (e.g., invasion of cheatgrass into shrublands and woodlands, and invasion of exotic forbs 
in wet meadows and riparian systems). 
 
The LANDFIRE program has developed maps of biophysical settings and current vegetation 
succession classes for the entire United States (Rollins 2009).   LANDFIRE’s remote sensing 
was based on multiple captures of Landsat imagery from the 1990s reflecting current land 
management practices.  We clipped this GIS data to the ~5,000,000-acre project area.  We 
refined the geodata using two major improvements: 1) replacing the LANDFIRE geodata 
covering National Forests with USFS’s enhanced biophysical settings and current vegetation 
classes and 2) remapping the LANDFIRE riparian layers with National Wetland Inventory 
(NWI) geodata. 
 

1) National Forest geodata.  After LANDFIRE made geodata available for download in 
2009, Dr. Hugh Safford, the USFS regional ecologist for Region 5, used historic USFS 
vegetation plot data and maps to remap the LANDFIRE geodata for Region 5 National 
Forests, along with revising reference VDDT models and recalculating NRV.  USFS used 
LANDFIRE’s definitions and standards.  We used the new USFS geodata to replace the 
LANDFIRE geodata for approximately 70% of the study area (i.e., stamping new geodata 
over old geodata).  The area outside National Forests was retained in their original 
LANDFIRE version.   



   
2) Riparian geodata.  LANDFIRE’s biophysical setting map lacked Montane Wet Meadow, 

which is a critical ecological system for the Northern Sierra Partnership.  LANDFIRE did 
not consider wet meadows as a distinct biophysical setting; therefore, they were not 
mapped.  LANDFIRE mapped as agriculture (pasture), sagebrush, and riparian large 
areas we knew were large wet meadows.  Without external geodata on wet meadows, it 
would not have been possible to map them.  The NWI data were used to remedy 
biophysical setting shortcomings.  Therefore, all NWI vegetation types that could be 
conceived as marsh, wet meadow, wetland, or naturally inundated lands were called 
montane wet meadow and replaced the LANDFIRE biophysical setting geodata.  The 
new layer captured well known wet meadows.  In a few very small cases, NWI mapped 
“forested coniferous swamp”, which we lumped with lodgepole pine-wet (if LANDFIRE 
mapped forest types) or water (if LANDFIRE mapped water).  The NWI geodata were 
limited to biophysical settings and could not provide any information for vegetation 
classes.  The vegetation classes within each biophysical setting were obtained through a 
“coarse” crosswalk.  Rules were: 

• If wet meadow biophysical setting in LANDFIRE, then we made no change to 
vegetation classes; 

• If sagebrush biophysical setting in LANDFIRE, then we changed the area to wet 
meadow class U (Uncharacteristic) Desertification (lowered water table or 
diverted water favoring subxeric shrubs); 

• If forest (usually conifers) biophysical setting in LANDFIRE, then we changed 
the area to wet meadow class U Tree-Encroached (conifer encroachment for 
usually lowered water table or diverted water); 

• If agriculture or pasture in LANDFIRE, then we changed the area to wet meadow 
class C late-succession. 

 

Evaluating Current Ecological Condition 
 
We assessed the condition of each major ecological system by mapping ecological departure 
(a.k.a., Fire Regime Condition or FRC) using the methodology developed under the U.S. 
interagency LANDFIRE program (Hann and Bunnell, 2001; Shlisky and Hann 2003; Rollins 
2009; and adapted by Provencher et al. 2008).  The fundamental elements of ecological departure 
analysis include mapping the distribution of ecological systems that existed prior to European 
settlement or are today naturally functioning, mapping current vegetation and succession classes, 
and calculating dissimilarity between current and pre-settlement (or naturally functioning) 
conditions.  Ecological departure is an integrated, landscape-level measure of ecological 
condition that incorporates species composition, vegetation structure, and all significant 
disturbances (not only fire) for terrestrial and riparian ecological systems that would have 
occurred pre-settlement or in naturally functioning landscapes.  This methodology determines the 
dissimilarity between an ecological system’s current (or future simulated) condition and its 
natural range of variability (NRV).  NRV reflects the distribution of vegetation classes that 
would be found under naturally functioning ecological processes, as predicted by field studies, 
expert opinion, and computer simulations.  We calculated the ecological departure of each 
ecological system from new NRV using the grid data obtained from LANDFIRE, USFS geodata, 



and NWI.  Ecological departure is scored on a scale of 0% to 100% departure from NRV using 
the standard LANDFIRE methodology:  0% represents NRV while 100% represents total 
departure from NRV (dissimilarity equation in Provencher et al. 2008).   

Assessing Future Condition  

Predictive Ecological Models 
 
In order to forecast future condition with and without projected climate change effects (as well as 
to test alternative conservation strategies), one state-and-transition model was developed for each 
biophysical setting using Vegetation Dynamics Development tool (VDDT; Barrett 2001; 
Beukema et al. 2003) software.  A state-and-transition model is a discrete, box-and-arrow 
representation of the continuous variation in vegetation composition and structure of an 
ecological system (Bestelmeyer et al., 2004).  Different boxes either belong to different phases 
within a state or different states.  States are formally defined in rangeland literature (Bestelmeyer 
et al., 2004) as: persistent vegetation and soil changes per potential ecological sites that can be 
represented in a diagram with two or more boxes (phases of the same state).  Different states are 
separated by “thresholds.”  A threshold implies that substantial management action would be 
required to restore ecosystem structure and function.  Relatively reversible changes (e.g., fire, 
flooding, drought, insect outbreaks, and others), unlike thresholds, operate between phases 
within a state.  All ecological system models had at their core the LANDFIRE reference 
condition represented by some variation around the A-B-C-D-E succession classes, which are 
phases within the reference state.  (Some USFS models had an F class representing an alternative 
early succession class.)  The A-E class models typically represent succession from usually 
herbaceous vegetation (class A) to increasing woody species dominance where the dominant 
woody vegetation might be shrubs (class C) or trees (class E).   
 
We used LANDFIRE-based descriptions and models as modified by Dr. Hugh Safford for the 
five predominant forest systems in the Sierra Nevada.  For other systems, we used LANDFIRE 
descriptions and models or descriptions and models applied in the Bodie Hills in eastern 
California (Provencher et al., 2009; Low et al, 2010).  
 
The models for many ecological systems included “uncharacteristic” (U) classes.  Uncharacteris-
tic classes are classes outside of reference conditions.  Ecological departure calculations do not 
differentiate among the uncharacteristic classes – i.e., all U-classes are treated as equally outside 
of NRV.  However, the cost and management urgency to restore different uncharacteristic 
classes varies greatly.  TNC therefore previously developed and applied a separate designation 
and calculation of “high-risk” vegetation classes.  A high-risk class was defined as an 
uncharacteristic vegetation class that met at least one out of three criteria: 1) ≥5% cover of 
invasive non-native species, 2) very expensive to restore, or 3) a direct pathway to one of these 
classes (invaded or very expensive to restore) (Low et al., 2010).  We secured rates of conversion 
to uncharacteristic classes (e.g. the rate of cheatgrass invasion for ponderosa and Jeffrey pines) 
based on expert opinion and observational data (personal communication, Dr. Kyle Merriam, 
Plumas National Forest). 

Accounting for Variability in Disturbances  



The basic VDDT models incorporate stochastic disturbance rates that vary around a mean value 
for a particular disturbance associated with each ecological system.  The default variability is 
relatively minor in magnitude.  For example, fire is a major disturbance factor for most of the 
Northern Sierra’s ecological systems, including replacement fire, mixed severity fire, and surface 
fire.  These fire regimes have different rates or probabilities of occurrence in a given year (i.e., 
inverse of the mean fire return interval) that are incorporated into the models for each ecological 
system where they are relevant.  However, in real-world conditions the disturbance rates are 
likely to vary appreciably over time.  To simulate strong yearly variability for fire activity, 
drought-induced mortality, non-native species invasion rates, tree encroachment rate, loss of 
herbaceous understory, flooding, and so on, TNC incorporated temporal multipliers in the model 
run replicates.   This approach was pioneered by TNC for the Bodie Hills project at the request 
of the Bureau of Land Management Bishop Field Office (Provencher et al., 2009). 
 
A temporal multiplier is a number in a yearly time series that multiplies a base disturbance rate 
in the VDDT models: e.g., for a given year, a temporal multiplier of one implies no change in a 
disturbance rate, whereas a multiplier of zero is a complete suppression of the disturbance rate, 
and a multiplier of three triples the disturbance rate.  A temporal multiplier can be obtained from 
time series data or theoretically derived.  
 
We generated temporal multipliers for two different purposes: 1) to represent the reference 
condition and estimate new NRV (i.e., we did not use NRV provided by LANDFIRE) and 2) to 
represent the period of fire suppression and land management in the northern Sierra Nevada. 

 
NRV Estimation.  The Palmer Drought Severity Index (PDSI) was used to create most 
temporal multipliers, including for fire.  The PDSI (mean monthly November-April; raw 
numbers were not modified) for the region was used to create 100-year temporal multipliers 
to more accurately reflect annual variability in fire and other disturbance regimes.  The PDSI 
period from 1896-2006 was obtained from the USFS (also: Data source from NOAA 
National Climate Data Center - http://www.ncdc.noaa.gov/oa/mpp/).  Taylor and Beaty 
(2005) showed that the PDSI is highly negatively correlated to fire frequency and total area 
burned for forest types during pre-settlement: more fire was observed during increasingly 
drier years.  The same relationship holds for average temperature (Westerling et al. 2006).  
This, however, does not apply to shrublands that must first experience consecutive wetter 
than average years to accumulate fine fuels that will more likely burn in a dry year 
immediately following the wet year sequence (Westerling and Bryant 2008; Westerling, in 
press).  The first replicate of the PDSI time series was obtained from the 1896 to 1995 
period.  The next four replicates were randomly resampled with replacement from the full 
111-year time series with MS Excel’s VLOOKUP function; they conserved the original time 
series’ number of high and lows, and magnitude of area burned per year.  Cyclical behavior, 
such as caused by climate forcing factors, will not be preserved by this approach.   
 
By trial-and-error, we fitted equations that converted the PDSI time series values into 
temporal multipliers of fire and other mortality sources that had to satisfy one important 
condition:  the results of NRV simulations with their imbedded temporal multipliers  had to 
reproduce USFS data-supported estimated fire and insect/disease rates (probability per year) 
when simulated to equilibrium in each of five VDDT major forest model developed by 



Safford.  In other words, fire and insect/disease rates in the VDDT models were “true” 
because USFS staff had estimated them from field data, whereas the PDSI variability we 
were introducing as an external forcing factor had never been used for simulations.  
Therefore, simulations with PDSI had to yield realized rates for fire and insect/disease that 
approximately equaled the field estimates, which in turn required transformation of the 
yearly PDSI values for each temporal multiplier series.  Different negative exponential 
equations were used because the general form of the negative exponential appropriately 
damped the effects of wet and average years (positive PDSI) but magnified the effects of 
truly dry years (negative PDSI) (Table A-1; Figure A-1 except intraspecific competition).  
Obtaining the best fitting negative exponential equation for each simulation type was an 
incremental trial-and-error process in parameter fitting.  Using temporal multipliers from 
Table A-1, simulations were run for 100 years to obtain equilibrium values for vegetation 
classes.  If equilibrium was not achieved after 100 years, the previous run’s end values 
became the initial conditions for the next 100 years and repeated until equilibrium was 
reached.  Equilibrium values were the NRV.   

 
Table A-1. Temporal multipliers fitting equations for biophysical settings developed by USFS 
R5. Legend: RF = replacement fire, MF = mixed severity Fire, SF = surface fire, and I/D = insect 
& disease.   
 
Biophysic
al setting 

RF MF SF I/D Intra-specific 
Competition# 

Red Fir-
White Pine 

0.5474e-

0.4938PDSI 
0.0364e-

1.5PDSI 
0.5202e-

0.7177PDSI 
0.5474e-

0.4938PDSI 
 

Red Fir-
White Fir 

0.5474e-

0.4938PDSI 
0.0364e-

1.5PDSI 
0.5202e-

0.7177PDSI 
0.194e-

0.8056PDSI 
 

Mixed 
Conifer 

0.5474e-

0.4938PDSI 
0.0364e-

1.5PDSI 
0.5652e-

0.5664PDSI 
0.5474e-

0.4938PDSI 

e-

(PDSI+abs(min[PDS

I])) /  
    e-

abs(min[PDSI]) 

Ponderosa 
Pine 

0.5474e-

0.4938PDSI 
0.0364e-

1.5PDSI 
0.5202e-

0.7177PDSI 
0.5652e-

0.5664PDSI 

e-

(PDSI+abs(min[PDS

I])) /  
    e-

abs(min[PDSI]) 

Jeffrey 
Pine 

0.5474e-

0.4938PDSI 
0.194e-

0.8056PDSI 
0.5652e-

0.5664PDSI 
0.5652e-

0.5664PDSI 

e-

(PDSI+abs(min[PDS

I])) /  
    e-

abs(min[PDSI]) 
#Intra-specific competition among early-succession saplings was included in USFS models, but a 
field-estimated was not provided; therefore, we could not fit an equation. We developed a 
plausible equation that caused wetter than average years to suppress intra-specific competition.  
 
 



 
Figure A-1.  Temporal multipliers based on the Palmer Drought Severity Index (PDSI) for 
biophysical settings developed by USFS R5. Legend: RF = replacement fire, MF = mixed 
severity Fire, SF = surface fire, and I/D = insect & disease, PIJE = Jeffrey pine, ABMA = 
California red fir, PIPO = ponderosa pine, ABCO = white fir, and PIMO = western white pine.  
 
 
Temporal multiplier equations in Table A-1 applied to Safford’s five models.  There were, 
however, 20 other biophysical settings that also needed temporal multipliers based on PDSI for 
consistency in methods.  “Thematic” temporal multipliers were developed by which similar 
biophysical settings were grouped: i) shrublands - subxeric woodlands, ii) alpine – subalpine – 
wet systems (including aspen), and iii) low- and mid-elevation forests.  These are shown in Table 
A-2.  The low- and mid-elevation forest group essentially shared ponderosa pine’s temporal 
multipliers.  The shrubland - subxeric woodland group was based on our work in the Bodie Hills 
of eastern California for big sagebrush (Provencher et al., 2009).  The temporal multiplier 
equation for fire in shrublands reflects the fact that moisture and fine fuels have to build up with 
above average moisture before fire can spread in these subxeric systems (Westerling, in press): it 
is the only equation that considers PDSI over two consecutive years.  The alpine-subalpine-wet 
system group included all systems that are not water limited, except during droughts.  
 

 
 



Table A-2. Temporal multiplier fitting equations for biophysical settings not developed by USFS 
R5. Legend: RF = replacement fire, MF = mixed severity Fire, SF = surface fire, and I/D = insect 
& disease. 
 
Biophysi
cal 
setting 

RF MF SF I/D Drought Snow-
Deposition 

Very-
Wet-
Year 

Alpine-
Subalpine
-Wet 
Systems 
(includin
g Aspen) 

0.5474 ×  
e-0.4938PDSI 

0.0364 
× e-

1.5PDSI 
 

0.5474 
×  
e-

0.4938PDS

I 

0.5474 ×  
e-

0.4938PDSI 

if(PDSI < -
2.5 then  =0 
else =0.9334 
+ 
0.3338PDSI) 

 

Low 
&Mid-
Elevation 
Forest 

0.5474 ×  
e-0.4938PDSI 

0.0364 
× e-

1.5PDSI 

0.5652 ×  
e-0.5664PDSI 

0.5652 
× e-

0.5664PDS

I 

 

 

 

Shrublan
d-
Subxeric 
Woodlan
d 

e0.5(PDSIt- 

PDSIt+1-1)  

    × e-

0.1PDSIt+1 

 

e0.5(PDSIt- 

PDSIt+1-1) 

     × e-

0.1PDSIt+1 

 
0.5474 ×  
e-

0.4938PDSI 
 

If(PDSI 
>2, then 
=PDSI 
else =0) 

 
 
 
Temporal multipliers for montane-subalpine riparian systems (not shown in Table A-2) were 
strongly dependent on flow variations (Rood et al., 2003; McBride and Strahan, 1984).    We 
had recently developed long term flow temporal multipliers for the lower Truckee River 
(USGS Sparks Truckee River gage), which is highly influenced by the Pacific Ocean and 
representative of the whole northern Sierra Nevada.  Variability of the 7-year, 20-year, and 
100-year flood events used in the models were all based on filtering the full time series for 
increasingly higher values of annual peak flow that correspond to these flood events.  The 
three levels of flooding corresponded to 7-year events that killed or removed only herbaceous 
vegetation; 20-year events that killed or removed shrubs and young trees; and 100-year 
events that top-killed larger trees (i.e., these are three distinct disturbances in the riparian 
VDDT models).  All temporal multipliers were obtained by dividing peak flow from each 
year by the temporal average of peak flow.  Based on known flood events for the Truckee 
River, the 7-yrear, 20-year and 100-year flood events, respectively, corresponded to ~0.8,  ~1 
and ~3.69 of the flood temporal multiplier series:  All values less, respectively, than the 
thresholds of 1 and 3.69 for the 20-year and 100-year flood events were zero because they 
did not have enough force to destroy class-dependent vegetation (i.e., had no effect on 
vegetation in the class), whereas all values above the flood event thresholds were used 
directly as a temporal multiplier (Figure A-2).  The 7-year flood events encompass the full 
time series of peak flow because few peak flows were below the 7-year event threshold and 
those that were below actually suppressed the model’s disturbance rate.   
 



 
Figure A-2.  Riparian temporal multipliers a) for 7-year, 20-year, and 100-year flood events, b) 
for cottonwood and willow recruitment, and c) for low average August and September flows that 
kill cottonwood and willow seedlings.  For the 20-year and 100-year flood events, respectively, 
all values below their threshold were zero.  Data obtained from the Sparks Truckee River U.S. 
Geological Survey gage.  The gray line for temporal multiplier = 1 represented the “no-change” 
or neutral parameter line. 

 
 
Two other riparian disturbances were used during the first two years of succession: 
cottonwood-willow recruitment and low-flow-kill.  Each had a temporal multiplier based on 
different flow data.  Cottonwood-willow recruitment depends on flood stage and recession 
rate (Rood et al., 2003; McBride and Strahan, 1984), which do not translate nicely into the 
yearly time step of VDDT models.  To imitate the effect of stage and recession on 
Cottonwood-willow recruitment, two dependent components that had to be met for successful 
recruitment: 
 

1. Recruitment was more successful as peak flows increased in a given year for various 
reasons, including scouring and creation of wetted mineral surface.  The temporal 
multiplier (yearly peak flow divided by the temporal average of peak plow) 
contributed to recruitment if it was > 0.77 or a 5-year flood event, which is a typical 
minimum overbank flow value; (Figure A-2); and  



2. Given peak flows were sufficient for recruitment, sometimes recruitment failed for 
purely random reasons in a year due to various factors including the shape of the 
hydrograph (appropriate recession rate) and weather.  We assigned an arbitrary 5% 
rate of failure of cottonwood and willow germination (i.e., 95% of times germination 
would succeed).  The 5% rate of failure to germinate was randomly drawn from a 
uniform distribution in MS Excel (RAND() function).   

After recession of spring flows, low-flow-kill was a source of mortality applied to the 
established cottonwood and willow seedlings (i.e., successfully germinated in June and July) 
that was caused by desiccation of seedlings from prolonged lower summer flows.  The 
lowest water months of the year causing this mortality were August and September.  We 
summed August and September flows in a year and then divided them by the temporal 
average of this sum to obtain the temporal multiplier time series.  If the low-flow temporal 
multiplier was >1 (i.e., more water than average), low-flow-kill was zero (i.e., no 
desiccation), otherwise low-flow-kill was the inverse of the low flow temporal multiplier 
(i.e., greater mortality for lower summer flows; Figure A-2). 
 
We used PDSI to calculate NRV because PDSI captured the high variability of dry and wet 
years, and fire activity in the northern Sierra Nevada (Taylor and Beaty 2005).  However, we 
do not necessarily recommend the approach of incorporating more realistic levels of 
variability to estimate NRV as a general practice for other projects because significant 
changes in the PDSI or any critical time series data (spatially or duration) can lead to a 
different recalibration of the models parameters and NRV.  Our approach was very time-
consuming.  The accepted standard method for NRV estimation — LANDFIRE’s — does 
not use any external source of variability (i.e., no temporal multipliers) other than the default 
variability of VDDT and is far less arduous. 

 
Incorporating Fire and Land Management into Models.  Different fire temporal multipliers 
were used for post-settlement models than for NRV models.  We secured fire history geodata 
for the northern Sierra Nevada from federal and state sources to more accurately reflect the 
actual annual variability in fire activity in the forest ecosystems during the XXth century and 
early XXIst century — including fire suppression and wildfires escaping suppression efforts.  
The temporal multipliers used for this phase of modeling were based on total area burned 
geodata from federal, state, and private lands over ~107 years.  Three steps were involved: 

1. Partition area burned: Using GIS, we clipped the fire area geodata to the east and west 
sides of the Sierra Nevada, and further separated those areas by biophysical settings, 
to create 100-year (the full time series was 107 years long) fire time series per 
biophysical setting.   

2. Sum area burned by major biophysical setting groups:  The area burned by 
biophysical setting was pooled (summed) into five major functional groups and fire 
temporal multipliers (area burned in a year divided by the temporal average of area 
burned) were calculated for these groups to avoid tedious and possibly sized-bias 
temporal multiplier calculations, especially for small systems (Table A-3).  



3. Partition by fire severity:  Total are burned by major biophysical setting group was 
partitioned among the three fire severity types (replacement = high, mixed = 
intermediate, and surface = low); otherwise the variability of replacement fire would 
equal that of surface fire and lead to intense and unrealistic fire activity in forests and 
rangelands that are currently fire suppressed.  To obtain the severity type proportions, 
VDDT models of the most dominant biophysical settings were inventoried for their 
realized disturbance rates (result of simulations).  We then averaged these rates across 
biophysical settings by fire type.  These rates were divided by their total (of the three 
types) to guarantee a total proportion of one (Table A-4).  As a final result, fifteen 
time series (i.e., three time series per each of five replicates, one each for 
replacement, mixed severity, and surface fire) were uploaded into the appropriate 
VDDT models, and yearly probability multiplier values multiplied the average 
wildfire rate in the models.  All replicates had differing peaks and lows of fire 
activity.  Importantly, the temporal multipliers reflected fire suppression practices and 
human activity of the last century and were considered the “no-climate change” 
version for all simulations.  

 
Table A-3.  Biophysical settings by functional groups. 
Functional Group Biophysical Setting 
Alpine & Subalpine   
 Subalpine meadow 
 Alpine Shrubland 
 Lodgepole Pine-dry 
 Lodgepole Pine-wet 
 Subalpine Woodland 
 Red Fir-Western White Pine 
 Red Fir-White Fir 
Mid-Elevation Forest   
 Mixed Conifer-Mesic 
 Yellow Pine East Side 
 Ponderosa Pine-Mixed Conifer 
 California Oak-Pine Forest 
 Wet Meadow 
 California Montane Riparian 
 Great Basin Montane Riparian 
Mid-Elevation Eastern Shrubland   
 Montane sagebrush Steppe 
 Big Sagebrush Shrubland 
 Low Sagebrush 
 Pinyon-Juniper Woodland 
 Curlleaf Mountain Mahogany 



 Aspen Woodland 
 Aspen-Mixed Conifer Forest 
Xeric-Shrubland   

 
Ultramafic Woodland and 
Chaparral 

 Montane Chaparral 
Lower-Elevation-Western Forest & 
Woodland   
 California Mixed Evergreen Forest 
 Blue Oak-Pine Foothill Woodland 

 
 
 
Table A-4. Relative proportions of fire severity types. 

Functional Group Fire Type 
Relative 

Proportion 
Alpine & Subalpine     
 surface fire  0.73 
 mixed fire 0.19 
 replacement fire 0.07 
Mid-Elevation Forest     
 surface fire  0.35 
 mixed fire 0.39 
 replacement fire 0.26 
Mid-Elevation Eastern Shrubland&     
 surface fire  0.01 
 mixed fire 0.01 
 replacement fire 0.98 
Xeric-Shrubland&     
 surface fire  0.01 
 mixed fire 0.01 
 replacement fire 0.98 
Lower-Elevation Western Forest & 
Woodland #     
 surface fire  0.35 
 mixed fire 0.46 
 replacement fire 0.19 

& These types generally only have replacement fire; however 1% each for mixed severity and 
surface fire were allowed for a few exceptions. 
# Based on ponderosa pine VDDT data 



 

Temporal multipliers for drought-induced mortality, insects and disease, snow deposition, 
very-wet-year, flooding, cottonwood-willow-recruitment, and low-flow-kill that were shown 
above for NRV estimation were also used in management models.  The Truckee River flow 
temporal multipliers were kept to represent the east side; however, new USGS gage data 
were obtained from the Feather River at Oroville to calculate west side 7-, 20-, and 100-year 
flood events, cottonwood-willow recruitment, and low-flow-kill temporal multipliers.   

New temporal multipliers were needed, however, for tree (singleleaf pinyon and Utah or 
western juniper) encroachment into shrublands and non-native species invasions.  We 
assumed that the rate of annual grass-invasion was greatest in wetter years and least in drier 
years (Table A-5).  Tree encroachment similarly responded to PDSI, but we assumed a much 
slower process (Table A-5).  Both temporal multiplier equations were linear for the non-null 
portion of the relationship.  Linearity was chosen as the simplest assumption because Dr. 
Robert Nowak at University of Nevada, Reno indicated that he was not aware of any 
published data to inform our pixel-based modeling.     

 
Table A-5. Temporal multipliers fitting equations by biophysical setting. Legend: AG-Invasion = 
annual-grass invasion. 
 
Biophysi
cal 
setting 

Tree-Invasion AG-Invasion 

Ponderos
a Pine & 
Jeffrey 
Pine 

 

f(PDSI < -2.5 
then 0 else 
1.8+0.7156PD
SI) 

Sagebrus
h 
shrubland
, Pinyon-
Juniper & 
Mountain 
Mahogan
y 
Woodlan
d 

if(PDSI < -2.5 
then 0 else 
0.9334+0.333
8PDSI) 

if(PDSI < -2.5 
then 0 else 
1.8+0.7156PD
SI) 

 
 
A final parameter was exotic forb-invasion in montane-subalpine riparian and wet meadow.  
We assumed that years of greater average annual flows would favor the invasion of exotic 
forbs.  The exotic forb invasion temporal multiplier was the only one based on average 
annual flow because we assumed that year-round flows provided the soil moisture to promote 
weed growth.  The rate of exotic forb invasion was, therefore, multiplied by the annual flow 
temporal multiplier (Figure A-3).    



 

 

 
Figure A-3.  Temporal multipliers for exotic fob invasion for the Truckee River (east side, 
upper graph) and Feather River (west side; lower graph).  Under the no-climate change 
scenario, the exotic forb invasion temporal multiplier is equal to the annual flow temporal 
multiplier.  The y-axis was set high to facilitate the comparison to the climate change 
scenario presented below.  
 



 
Modifications of Temporal Multipliers to Reflect Future Climate Change 

 
Fire Temporal Multipliers 
 
We modified several replicate temporal multipliers from the east and west sides to simulate 
future fires assuming increasingly higher temperatures and about the same total precipitation 
(Parallel Climate Model with the business-as-usual B066.44 scenario from Dettinger et al., 
2004; Figure A-4), and increasing green house gases (Figure A-4; IPCC 2007).  The 
temperature, precipitation, and GHG multipliers were calculated differently than other 
temporal multipliers (the precipitation temporal was not needed): The temperature and GHG 
temporal multiplier time series were, respectively, obtained by dividing each year’s value (in 
degree Celsius for temperature) by the value of temperature and GHG of the first year of the 
time series.  We chose this different calculation of temporal multipliers under the assumption 
of increasing temperature and GHG would increasingly affect model parameters and that the 
beginning of the simulation is not affected by climate change factors (thus, temporal 
multiplier of the first year = 1).  In retrospect, however, we recommend the standard division 
by the time series’ temporal average to minimize, but not remove problems with unit 
conversions (e.g., Fahrenheit versus Celsius), but then adding a constant to all transformed 
values such that the first temporal multiplier at the beginning of the series is equal to one.   
 
The simplest, most generic modification of historic fire temporal multiplier was to multiply 
year for year each historic replicate fire temporal multiplier for each of the five vegetation 
groups by the predicted temperature temporal multiplier (Figure A-4).  This assumed that 
higher temperature caused more forest fire activity in a linear manner.  The assumption of 
higher temperature or greater PDSI causing more fire activity is highly supported for forested 
systems (Taylor and Beaty 2005; Westerling et al. 2006; Westerling and Bryant 2008; 
Westerling in press).   Westerling and Bryant (2008) showed nonlinearities between area 
burned and maximum temperature; however, their predictions under the A2 emissions 
scenario showed a nearly linear relationship between percent change in number of voxels 
(i.e., unit of  lat × long × month) burned with fires >200 ha and future years of simulation.  
This bulk update of future fire activity resulted in 15 new temporal multipliers (5 groups × 3 
fire severities) for each of the east and west sides representing climate change. 
 
Temporal multipliers for fire, with and without climate change, are depicted in Figures A-5 
to A-14. Every 100-year segment of the x-axis is a replicate. 
  



   
Figure A-4. Temporal multiplier of temperature for the Northern Sierra Nevada (based on 
Dettinger et al. 2004) and global green house gases (based on IPCC 2007) under the “business-
as-usual” (A2) climate change scenario.  Temperature raw data obtained from Dr. M. Dettinger, 
USGS, 2009 based on the PCM simulations. The green house gases and temperature temporal 
multipliers were each calculated by dividing each yearly value by the value of the first year of 
the time series.    



  
Figure A-5. Temporal multipliers of fire severity types for low elevation forest types on the east 
side of the Sierra Nevada. 



 Figure A-6. Temporal multipliers of fire severity types for mid- elevation forest types on the 
east side of the Sierra Nevada. 

 
 



  
Figure A-7. Temporal multipliers of fire severity types for subalpine forest types and alpine 
systems on the east side of the Sierra Nevada. 

 



 
Figure A-8. Temporal multipliers of fire severity types for mid-elevation shrublands and 
woodlands on the east side of the Sierra Nevada. 

  



 
Figure A-9. Temporal multipliers of fire severity types for xeric shrublands on the east side of 
the Sierra Nevada. 

 



 
Figure A-10. Temporal multipliers of fire severity types for low-elevation forests on the west 
side of the Sierra Nevada. 
 

 



  
Figure A-11. Temporal multipliers of fire severity types for mid-elevation forests on the west 
side of the Sierra Nevada. 



 
Figure A-12. Temporal multipliers of fire severity types for subalpine forests and alpine systems 
forests on the west side of the Sierra Nevada. 



  
Figure A-13. Temporal multipliers of fire severity types for mid-elevation shrublands on the west 
side of the Sierra Nevada. 



 
Figure A-14. Temporal multipliers of fire severity types for xeric shrublands on the west side of 
the Sierra Nevada. 



Non-Fire Temporal Multipliers 
 
All other temporal multipliers involved modifications to drought, invasion rates, soil 
moisture, and flows.  Drought related temporal multipliers were the same on the east and 
west sides.  We assumed that the new PDSI under climate change would show drier (higher 
temperature, less precipitation, or more evapotranspiration) conditions, which means that 
positive PDSI values would become smaller and that negative values would become even 
more negative.  Although this assumption was conceptually true, the mathematical 
implementation of the modification is not straightforward, in part because several variables 
enter into the computation of PDSI (not just temperature) and its time step is monthly, not 
yearly (yearly PDSI is obtained through averaging) (Heddinghaus and Sabol 1991).  
Therefore, we arbitrarily chose to multiply yearly original PDSI values <0 (dry years) by the 
temperature temporal multipliers to make them more negative or drier, whereas values ≥0 
(wet years) were divided by temporal multipliers keeping them positive but reduced (Figure 
A-15).  This heuristic linear modification was not too unreasonable given that the real PDSI 
equation is also a linear formula based on past values of PDSI: 
 

PDSIt = 0.897×PDSIt-1 + calibrated change in soil moisturet 
 
where t is the month and the calibrated change in moisture can be ≥ or < zero (Heddinghaus 
and Sabol 1991).   

 
All non-fire equations developed above (Tables A-1, A-2, and A-5) used the new PDSI for 
climate change simulations.  One exception was the intra-specific competition equation that 
became: 
 
 = e-TempCC×(PDSI+abs(min[PDSI])) / e-abs(min[PDSI]), 
 
where PDSI is the original time series from 1896 to 2006 and TempCC is the temperature 
temporal multiplier assuming climate warming.  Under future drier conditions, we 
heuristically assumed that intra-specific competition will be more intense.   
 
 



 
Figure A-15. PDSI for the northern Sierra Nevada from 1896 to 2006 (upper graph) and 
modified PDSI assuming temperatures increasing by +3oC (lower graph).   

 
 
As before, flow temporal multipliers were generated with gage data from the Truckee River 
and Feather River. The peak flow temporal multiplier (-CC for no climate change) was 
modified for climate change (+CC) under the simple assumptions that peak flows and their 
variability increase with time due to more frequent rain-on-snow events and early snow melt.  



A heuristic relationship was built in the absence of more mechanistic flow modification 
equation: 
 
Peak Flow+CC temporal multiplier   

= Peak Flow-CC temporal multiplier × (1+U × U × log10[time-step]), 
 
where U is a random number drawn (0≤U<1) from a uniform distribution.  In this equation, 
peak flow increases by nearly twice over 100 years as both drawn random numbers are closer 
to one.  The multiplication of the two independently drawn random numbers insures a highly 
variable time series (Figure A-16).  The new time series was used to obtain 7-year, 20-year, 
and 100-year flood events using the same rules as described above.   
 

 
Figure A-16. Peak flow temporal multipliers without climate change versus climate change 
effects used to illustrate heuristic transformation using gage data from Feather River.  
Regression bands are ±95% confidence intervals.  Note the slope > 1 and increasing 
variability with higher values.  
 
 
The cottonwood and willow recruitment temporal multiplier used the new temporal 
multiplier for peak flow; however, the rules for successful recruitment were modified under 
the climate change scenario.  As before, a 5% failure rate was assumed: 5% of years were 
randomly chosen for completely failed recruitment.  For the no-climate change scenario, we 
had assumed that the level of peak flow during a year was the only datum that determined if 
enough river scouring, deposition, and wetting permitted recruitment.  With climate change, 



however, peak flow was predicted to occur increasingly earlier (Maurer 2007) and before 
flowering and seed deposition of cottonwood and willow.  (We also assumed that 
cottonwood and willow flowering would not “catch up” with earlier flows because of 
potential genetic constraints and persistent cold air drafting in drainages.)  Therefore, 
recruitment was increasingly uncertain with time due to the mismatch of peak flow and 
flowering.  Maurer’s (2007) estimates of uncertainty (of earlier flow occurring) for periods of 
30 years under the “business-as-usual” scenario of the PCM model were used to reduce 
recruitment success: 87% for years 1 to 30; 74% for years 31 to 60; and 61% for years 61 to 
100.  To determine successful recruitment the product of this uncertainty (as a proportion) 
and the peak flow temporal multiplier with climate change needed to be >0.77 (as before 
without climate change); otherwise the resulting temporal multiplier was zero.  In summary, 
the onset of future peak flow will always have a depressing effect on cottonwood and willow 
recruitment, but future peak flow can be higher and more variable and compensate for loss of 
recruitment success. 
 
The low-flow-kill temporal multiplier shared a similar heuristic equation as that of peak flow, 
with the exception that the temporal multiplier was the inverse of the average August and 
September flow (= low flow) multiplied by the correction factor for climate change: 
 
Low-flow-kill +CC temporal multiplier   
= 1/{low flows-CC temporal multiplier × (1+U × U × log10[time-step])} > 1; 
= 0 if 1/{low flows -CC temporal multiplier × (1+U × U × log10[time-step])} ≤ 1. 
 
We hypothesized that carbon from enhanced atmospheric green house gases would fertilize 
exotic forb species growth, seed or root production, and invasion of uninfested areas if the 
floodplain was sufficiently wetted by annual (not peak) flows (Bradley 2009; Smith et al., 
2000).  The temporal multiplier for exotic forb invasion was simply the year by year 
multiplication of the green house gases temporal multiplier and the annual flow temporal 
multiplier (i.e., more infestation during years of higher annual flows and more atmospheric 
carbon), divided by 0.6, which is about the annual flow realized on the Truckee during a year 
with a 5-year flow (Figure A-17).  This correction factor insured that only the lowest annual 
flow depressed exotic forb invasion.  
 



 
Figure A-17.  Temporal multipliers for exotic forb invasion under a climate change scenario 
of increasing green house gases.  



 

Using VDDT to Simulate Vegetation Conversions 
To simulate potential future shifts in biophysical settings, we first determined the rate of 
projected shift, and then determined the type of projected vegetation shift. 
 
As described in Section 3, we used future “climate envelope” projections for major tree and 
shrub species to show predicted rates of stress over the next 80 years for the associated 
biophysical settings.  The rate of stress in the VDDT models was the proportion of a 
biophysical setting experiencing stress as calculated in Section 3 divided by the number of 
years projected (i.e., 80 years).  Projected stress areas for a given species were assumed to 
equate with likely conversion because the species would not reproduce under the new 
climatic conditions.  It was realized that a biophysical setting might persist beyond the 80 
years of predicted stress because adult trees can survive although their offspring fail to 
establish.  To minimize this problem, biophysical setting conversion in the models only 
occurred when a stand replacing disturbance killed adults; in other words, a biophysical 
setting could persist for longer than predicted if it did not experience significant stand 
replacing events, even assuming increased disturbance rates with climate change.  This 
adjustment led to another problem: some subalpine and aspen biophysical settings that were 
predicted to experience very high levels of stress did not experience vegetation shifts rapid 
enough to “keep up” with predicted stress over 80 years because the natural disturbance rates 
are too slow (for example, a long mean fire return interval).  In these cases, 100% of all stand 
replacing events caused a vegetation shift, although conversion was still not “fast enough.”   
 
To forecast the type of biophysical settings that would replace a stressed one, we used Dr. 
Jim Thorne’s data on actual vegetation conversions based on the analysis of Wieslander 
Vegetation Type data for the Sierra Nevada.  The critical assumption made here was that 
vegetation transitions from the last 80 years were the best guess to future transitions for our 
VDDT simulations with climate change effects.  Moreover, no other data were available.   
The conversion first required a crosswalk between the California Wildlife Habitat 
Relationship classification (WHR) used by Thorne et al. (2008) and biophysical settings 
(Table A-6).  
 

Table A-6. Biophysical settings and California Wildlife Habitat Relationship classification 
(WHR) crosswalk. 
Functional Group Biophysical Setting WHR 
Alpine & Subalpine    
 Subalpine meadow WTM 
 Alpine Shrubland ADS 
 Lodgepole Pine-dry LPN 
 Lodgepole Pine-wet LPN 
 Subalpine Woodland SCN 
 Red Fir-Western White Pine RFR 
 Red Fir-White Fir RFR 
Mid-Elevation Forest    



 Mixed Conifer-Mesic 
WFR, SMC, 
DFR 

 Yellow Pine East Side EPN, JPN 
 Ponderosa Pine-Mixed Conifer PPN 
 California Oak-Pine Forest MHC, MHW 
 Wet Meadow WTM 
 California Montane Riparian MRI 
 Great Basin Montane Riparian MRI 
Mid-Elevation Eastern 
Shrubland   

 

 Montane sagebrush Steppe SGB, BBR 
 Big Sagebrush Shrubland SGB, BBR 
 Low Sagebrush LSG 
 Pinyon-Juniper Woodland PJN 
 Curlleaf Mountain Mahogany PJN 
 Aspen Woodland ASP 
 Aspen-Mixed Conifer Forest ASP 
Xeric-Shrubland    
 Ultramafic Woodland and Chaparral MCH, MCP 
 Montane Chaparral MCH, MCP 
Lower-Elevation-Western 
Forest & Woodland   

 

 California Mixed Evergreen Forest MHC, MHW 
 Blue Oak-Pine Foothill Woodland BOP, BOW 

 
 

Thorne’s matrix of type conversions allowed us to convert VDDT virtual pixels from an 
original type to new types over time (~80 years) as dictated by the recalculated proportions  
(i.e., after elimination of “false” conversions) in the conversion matrix.  (See main text 
Section 5 for the distinction between true and false vegetation shifts.) 
 
The data for true conversion when more than one transition pathways were documented were 
used to split proportionally the rate of transition (previous paragraph) using proportions 
calculated from the Thorne data.  Several steps were involved in the calculations of 
vegetation shifts: 
 

1. Calculate the total rate of replacement events: Obtain the realized rate 
(probability/year) of each replacement disturbance from the non-climate change 
simulation (assuming minimum management) for the out-going biophysical setting.  
The rates of different disturbance types (for example, replacement fire and mixed 
severity fire) are summed according to their contributions to the early succession 
class.  For example, replacement fire had a rate 0.0026/yr and mixed severity fire of 
0.0148/yr in ponderosa pine; however mixed severity fire contributed only 25% to the 



early succession class, whereas replacement fire fully contributed to this class.  
Therefore, the weighted sum of replacement events = 0.25×0.0148 + 1×0.0026 = 
0.0063.   

2. Calculate total loss of “virtual pixels” from originating biophysical setting: During 
the 80-year period of simulation, a certain proportion of a biophysical setting’s area 
per year flows away from the out-going vegetation. This value is determined by the 
division of the percentage of the area of the biophysical setting stressed (as calculated 
in Section 3 of main text) by the total rate of replacement events.  To continue the 
example, approximately 6.6% of the ponderosa pine biophysical setting of today will 
be stressed during the next 80 years; as a result the realized loss of this biophysical 
setting will be 0.131 or 0.066 divided by 80 years and divided by 0.0063, which is the 
magnitude of realized replacement events.  

3. Split the loss to recipient biophysical setting(s) (i.e., vegetation shift): The loss per 
year of area (or virtual pixels) was allocated according to Thorne’s recalculated 
proportions to in-coming biophysical settings (i.e., biophysical settings that received 
pixels from out-going biophysical setting).  To complete the example, approximately 
85.3% of stressed ponderosa pine being lost at the above rate of 0.131 will convert to 
California mixed evergreen and 14.7% to chaparral.   

4. Split the disturbance rates in the losing biophysical setting:  To simulate this 
calculated outcome, split all replacement disturbances in the original biophysical 
setting model.  In the ponderosa pine example, the original replacement rates are split 
in three proportions for each of replacement fire and mixed fire: 

a. No conversion = 1 – 0.131 = 0.869 for replacement fire 
b. Conversion to California mixed evergreen = 85.3% × 0.131 = 0.112 for 

replacement fire  
c. Conversion to chaparral = 14.7% × 0.131 = 0.019 for replacement fire 
d. The three rates above are each multiplied by 0.25 to obtain the conversion 

proportion based on the contribution of mixed severity fire, which was 25% 
top-kill.  

5. These proportions are implemented in every model’s appropriate pathways.   

 
Simulations will generate new pixels for in-coming biophysical settings in the model of the 
out-going one.  In the final accounting of area for ecological departure calculation, the new 
pixels must be added to the results of another independent model representing the recipient 
biophysical setting.  Ideally, all inter-connected models should be simulated in a single 
“Uber” model, which is the more recent modeling approach we use.  

 

References 



Barrett, T.M. 2001. Models of vegetation change for landscape planning: a comparison of 
FETM, LANDSUM, SIMPPLLE, and VDDT.  USDA Forest Service General Technical 
Report RMRS-GTR-76-WWW. 

Beukema, S.J., W.A. Kurz, C.B. Pinkham, K. Milosheva, and L. Frid. 2003. Vegetation 
Dynamics Development Tool, User's Guide, Version 4.4c. Prepared by ESSA Technologies 
Ltd.. Vancouver, BC, Canada, 239 p. 

Bestelmeyer, B.T., Brown, J.R., Trujillo, D.A., Havstad, K.M.,  2004. Land management in the 
American Southwest: a state-and-transition approach to ecosystem complexity. 
Environmental Management 34: 38-51. 

Bradley, B.A. 2009. Regional analysis of the impacts of climate change on cheatgrass invasion 
shows potential risk and opportunity. Global Change Biology 15: 196-208 

Dettinger, M.D., D.R, Cayan, M.K. Meyer,, and A.E. Jeton. 2004. Simulated hydrologic 
responses to climate variations and change in the Merced, Carson, American River basins, 
Sierra Nevada, California, 1900-2099. Climatic Change 62: 283-317. 

Hann, W.J., Bunnell, D.L., 2001.  Fire and land management planning and implementation 
across multiple scales.  International Journal of Wildland Fire 10: 389–403. 

Heddinghaus, T.B., Sahol, P. 1991. A Review of the Palmer. Drought Severity Index and Where 
Do We Go From Here? Proc. 7th Conf. on Applied Climatology, Salt Lake City, Utah. p. 
242-246. 

Intergovernmental Panel on Climate Change. 2007. Climate Change 2007: Impacts, Adaptation 
and Vulnerability. Contribution of Working Group 1 to the Fourth Assessment Report of the 
IPCC. Cambridge University press, Cambridge, UK. 

Low, G., Provencher, L., Abele, S.A., 2010. Enhanced conservation action planning: assessing 
landscape condition and predicting benefits of conservation strategies. Journal of 
Conservation Planning 6:36-60. 

Maurer, E.P. 2007. Uncertainty in hydrologic impacts of climate change in the Sierra Nevada, 
California, under two emissions scenarios. Climatic Change 82: 309-325. 

McBride, J.R., Strahan, J. 1984. Establishment and survival of woody riparian species on gravel 
bars of an intermittent stream. American Midland Naturalist 112:235-245. 

Provencher, L., Campbell, J., Nachlinger, J., 2008. Implementation of mid-scale fire regime 
condition class mapping. International Journal of Wildland Fire 17: 390-406. 

Provencher L., G. Low G., Abele S.,  2009. Bodie Hills Conservation Action Planning.  Final 
Report to the Bureau of Land Management Bishop Field Office, The Nature Conservancy, 
http://conserveonline.org/library/ 

Rollins, M.G. 2009. LANDFIRE: a nationally consistent vegetation, wildland fire, and fuel 
assessment. International Journal of Wildland Fire 18:235-249. 

Rood, S.B., C.R. Gourley, E.M. Ammon, L.G. Heki, J.R. Klotz, M.L Morrison, D. Mosley, G.G. 
Scoppettone, S.Swanson, and P.L. Wagner.  2003. Flows for floodplain forests: A successful 
riparian restoration. BioScience 53: 647-656.  



Shlisky A.J., Hann W.J., 2003. Rapid scientific assessment of mid-scale fire regime conditions in 
the western US. In ‘Proceedings of 3rd International Wildland Fire Conference’, 4–6 
October. Sydney, Australia. 

Smith, S.D., T.E. Huxman, S.F. Zitzer, T. N. Charlet, D.C. Housman, J.S. Coleman, L.K. 
Fenstermaker, J.R. Seemann, and R.S. Nowak. 2000. Elevated CO2 increases productivity 
and invasives species success in an arid ecosystem. Nature 408:79-82. 

Taylor, A.H., Beaty R.M., 2005. Climatic influences on fire regimes in the northern Sierra 
Nevada mountains, Lake Tahoe Basin, Nevada, USA. Journal of Biogeography 32: 425–438 

Thorne, J.H., Morgan, B.J., and Kennedy, J.A. 2008. Vegetation change over sixty years in the 
central Sierra Nevada, California, USA, Madrono 55:223-237. 

Westerling, A. L.: "Climate Change Impacts on Wildfire," Chapter 12 in Climate Change 
Science and Policy, Schneider, Mastrandrea, and Rosencranz, Eds., Island Press. in press, 
(English edition)  

Westerling, A.L. and B.P. Bryant, 2008: "Climate Change and Wildfire in California," Climatic 
Change 87: s231-249. DOI:10.1007/s10584-007-9363-z. 

Westerling, A.L., Hidalgo H.G., Cayan D.R., Swetnam T.W., 2006. Warming and Earlier Spring 
Increase Western U.S. Forest Wildfire Activity. Science 313: 940 - 943. 



Appendix B 

Historical climate and projected future climate changes 

 

Figure B1:  Historical and projected future average annual minimum temperatures for the 
Northern Sierra Partnership (NSP) region.   
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Figure B2:  Historical and projected future average annual maximum temperatures for the 
Northern Sierra Partnership (NSP) region.   
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Figure B3:  Historical and projected future annual precipitation for the Northern Sierra 
Partnership (NSP) region.   
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Figure B4:  Maps of average annual minimum temperature change across the NSP region 



 

Figure B5:  Maps of average annual maximum temperature change across the NSP region 



 

Figure B6:  Maps of annual precipitation change as forecast by the driest model across the NSP 
region 



 

Figure B7:  Maps of annual precipitation change as forecast by the wetest model across the NSP 
region 



Appendix C 
Descriptive Summary of Ecological Departure for 25 Northern Sierra Ecological Systems 
 
Summary 
 
Ecological departure measures an ecological system’s departure from its natural range of 
variability (NRV).  It is an integrated, landscape-scale metric that takes into account species 
composition, seral structure, and all relevant disturbances.  Scores are graded on a scale of 0 to 
100.  The higher the score, the more the ecosystem is “out of whack.”   
 
Ecological departure was assessed using LANDFIRE satellite imagery, supplemented by other 
data, for 25 Northern Sierra ecological systems over an area of approximately 5,000,000 acres. 
Northern Sierra ecological systems range from good to poor current condition. All occurrences 
under 500 acres were not scored, size per LANDFIRE recommendations. 
 
• Ten ecological systems are currently in good condition (i.e., low departure), including the 

region’s largest forest system and the three smallest systems: 
o Alpine shrubland           
o Aspen woodland 
o California mixed evergreen 
o Low sagebrush           
o Mixed conifer-mesic    
o Montane chaparral       
o Montane sagebrush steppe  
o Pinyon-juniper woodlands     
o Subalpine meadow    
o Subalpine woodland    

 
• Three ecological systems are in poor condition (i.e., high departure).  Two of these are 

attributable to uncharacteristic native species -- Great Basin riparian (uncharacteristic native 
species) and wet meadows (conversion to pastureland).   
      

• Twelve (12) other ecological systems are moderately departed from NRV, including four 
other large-scale conifer forest systems.  The current departure for most of these ecosystems 
can likely be largely attributed to fire suppression or invasive species. 

 
Ecological System Assessment 
 
In general, the overall Eastside & Westside departure scores are more accurate than scores that 
were calculated for the 10 individual watersheds, due to larger sample sizes.  Conditions for 
individual watersheds will be noted only when there is a substantial variance from the mean and 
sufficient acres in the occurrence. 
 
• Alpine Shrubland rates as good condition.  It is a simple system with only two vegetation 

classes, with almost all found in the dominant class with low-growing perennials.  It is the 
second-smallest ecosystem in the region (1,600 acres). 



 
• Aspen-Mixed Conifer Forests are generally lacking early succession vegetation and have too 

much conifer-dominated late succession.  They are in better shape in the Truckee River and 
Middle Fork Feather River watersheds than elsewhere. 

 
• Aspen Woodland is found almost exclusively on the eastside, and is generally in good 

condition.  However, it also has too much senescing clones in the late succession class that 
are opening up and a shortage of early succession vegetation.  

 
• Big Sagebrush Shrubland is found 99% on the eastside, where it is in fair condition due to 

virtually no early succession classes as well as the presence of invasive species.  (It shows as 
good condition on the westside, but with only a small acreage in the North Fork Feather 
River watershed.)   

 
• Blue Oak-Pine Foothill Woodland is found exclusively on the Westside (with only 4,700 

acres in the project area), where it is in fair condition due largely to an overabundance of late 
succession class with woody understory encroachment. 

 
• California Mixed Evergreen is found over 95% on the Westside, in good condition.    
 
• California Montane Riparian is in fair condition on both sides, with an overabundance of the 

late succession class. 
 
• California Oak Pine Forest, which is 90% on the Westside, is in fair condition on both sides.  

It shows as good condition in the North Fork Feather River, due to presence of both early 
succession and late succession classes, which are scarce elsewhere. 

 
• Curleaf Mountain Mahogany is found exclusively on the Eastside, in fair condition.    
 
• Great Basin Riparian is found 95% on the Eastside, in poor condition, due to over 50% in 

uncharacteristic native species (Wood’s rose, basin big sagebrush, irises), plus no early 
succession class. 

 
• Lodgepole Pine-Dry shows as poor (just barely) on the Eastside and fair on the Westside.  

The Eastside condition is due to an overabundance of the open late succession class; 
however, this may not be problematic, in that LANDFIRE shows this as the dominant class 
vs. our calculations of NRV based on Sierra climate. 

 
• Lodgepole Pine-Wet shows as fair condition on both sides, due to the same overabundance of 

the open late succession class. 
 
• Low Sagebrush is found solely on the Eastside, in good condition. 
 
• Mixed Conifer-Mesic Forest is the largest ecosystem and comprises 22% of the project area – 

over 800,000 acres in the Westside and over 200,000 acres Eastside.  It is generally in good 



condition, and may have been favored by fire suppression compared to the more fire 
dependent major forest systems. 

 
• Montane Chaparral  is found on both sides, overall in good condition.  However, more than 

any other system, the scores for montane chaparral vary greatly across the ten watersheds.  
However, like alpine shrubland, this is a very simple ecosystem with only two succession 
classes.  The variances are probably explained by recent fires that temporarily shift large 
chaparral patches into early succession in some watersheds.  

 
• Montane Sagebrush Steppe is found 98% on the eastside, generally in good condition.  The 

East Branch of the North Fork occurrence, which is actually on the eastside of the project 
area, is an outlier with an 83% departure score, with almost all of its 35,000 acres in the 
closed late succession class.  Unlike in many areas of the Great Basin with limited conifer 
seed sources, conifer encroachment is a powerful process in the Sierra Nevada where conifer 
seed source is abundant.  Conifer encroachment is also favored under condition of fire 
suppression. 

 
• Pinyon-Juniper Woodland is found solely on the Eastside, in good condition. 
 
• Ponderosa Pine – Mixed Conifer is the 3rd largest ecosystem and comprises 16% of the 

project area – almost 600,000 acres in the Westside and almost 200,000 acres Eastside.  It is 
generally in fair condition, with an overabundance of the closed mid succession class.  The 
good occurrence in the Hone-Eagle Lake watershed is relatively small acreage. 

 
• Red Fir – Western White Pine is abundant and generally in fair condition on both sides. 
 
• Red Fir – White Fir is also abundant and generally in fair condition on both sides due to 

overabundance of the closed mid-succession class; however, it is in good condition in the 
Upper Yuba and North Fork American watersheds. 

 
• Subalpine Meadow, the smallest ecosystem (1,300 acres), is in good condition on both sides. 
 
• Subalpine Woodland is generally in good condition on both sides, except for fair condition 

the Upper Carson and Lake Tahoe watersheds. 
 
• Ultramafic Woodland and Chaparral is found on thin, often serpentine soils, and shows as 

being in poor condition on both sides, due to an overabundance of the mid succession class.  
However, this departure score may be explained by the difficulty of remote sensing 
interpretation of the succession classes for this system. 

 
• Wet Meadow is in poor condition everwhere due to uncharacteristic native species, which 

exist in different forms.  In the Sierra Nevada, lodgepole pine and fir encroachment is 
common at the edge of wet meadows.  This encroachment increases during periods of dry 
years and fire suppression.  Dominance of wet meadows by silver sage, Wood’s rose, irises, 
and big sagebrush is also frequent and a consequence of intense historic grazing or poor 
current grazing management.   



 
• Yellow Pine is the 2nd largest system in the project area at 890,000 acres, with over 90% 

located on the eastside.  It generally is in fair condition everywhere due to overabundance of 
the closed mid succession class.  Many stands of yellow pine are still young because they are 
recovering from heavy logging that happened during the mining era of the 19th century.  

 



Appendix D – Ecological Departure Worksheets (Eastside and Westside) 
 
The following worksheets show the departure from the natural range of variability (NRV) for 
each Northern Sierra biophysical setting/ecological system, by Eastside and Westside.  For each 
system, the tables display the following information by row: 

• Name of biophysical setting 
• Class:  vegetation succession classes (per LANDFIRE model descriptions or Safford 

adaptations) 
• Acres in Class:  number of acres currently in each vegetation class, and total acres (last 

column) 
• NRV:  NRV percentage in each vegetation class 
• Current % in Class:  current percentage in each vegetation class 
• Ecological Departure:  departure from NRV (last column) 
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Appendix E - Acronyms 
 
BLM  Bureau of Land Management 
BpS   Biophysical Settings 
BpS refugia  Biophysical Settings refugia 
CMIP  Coupled Model Intercomparison Project  
CWHR California Wildlife Habitat Relationships 
FRLT  Feather River Land Trust 
GCMs  General Circulation Models 
IPCC  International Panel on Climate Change 
NPS  National Park Service 
NRV  Natural range of variability 
NSP  Northern Sierra Partnership 
PCM  Parallel Climate Model 
PCMDI Program for Climate Model Diagnosis and Intercomparison  
PDSI  Palmer Drought Severity Index 
PRISM Parameter-elevation Relationships on Independent Slopes Model 
SBC  Sierra Business Council 
TDLT  Truckee Donner Land Trust 
TNC  The Nature Conservancy 
TPL  Trust for Public Land 
US EPA United States Environmental Protection Agency 
USFS  United States Forest Service 
USGS  United States Geological Survey 
VDDT  Vegetation Dynamics Development Tool 
WCRP World Climate Research Programme 
WGCM Working Group on Coupled Modeling 
 
 
 
 




