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     Islands represent only around 5% of the world’s 
total land area but account for a large proportion 
of the world’s biodiversity (Tershy et al. 2015). 
Island species and ecosystems are particularly 
vulnerable to invasive species impacts, which have 
directly led to extirpations, extinctions, and loss 
of ecosystem function (Bellard et al. 2016, Reaser 
et. al 2020). Mammals, and particularly rodents 

in the genus Rattus, are among the most common 
and harmful vertebrates that have invaded islands, 
and their eradication is challenging and costly 
(Spatz et al. 2017, Bradshaw et al. 2021, Diagne 
et al. 2021). Thus, preemptive investment in 
biosecurity—or actions taken to prevent, detect, 
and rapidly respond to new incursions—is more 
cost-effective than attempting to eradicate an 
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      ABSTRACT.—Early detection of nonnative mammal incursions enables rapid management actions that are needed to 
prevent full-scale invasions. As biosecurity monitoring tools, camera traps can aid in the detection of nonnative species; 
however, the burden of image management and resources required to access cameras regularly for image collection both 
inflate costs and extend the latency period between invasive animal detection and manager response. Here, we describe a 
wireless camera network on Santa Cruz Island (SCI) that enabled instantaneous transfer of camera images from remote 
field sites to the cloud. Initial classification of images by machine learning allowed human reviewers to prioritize examining 
photos of possible concern. Comparison of AI predictions and human-validated image labels confirmed that machine-
learning models had high recall (or a low false negative rate) for image sequences containing rodents. Comparisons with a 
prior SD-card-based camera system on SCI revealed significant improvements in data review frequency and reliability, 
improving the likelihood of prompt nonnative species detection. Despite higher initial equipment costs, networked cameras 
were cost-effective over time, outperforming traditional methods in long-term deployments. Future iterations of the network 
could leverage cellular or satellite networks for broader scalability, enhancing biosecurity and general conservation efforts 
on islands and other vulnerable protected sites. 
 
      RESUMEN.—La detección temprana de mamíferos no nativos permite llevar a cabo acciones de gestión rápidas que son 
necesarias para prevenir grandes invasiones. Como herramientas de monitoreo de bioseguridad, las cámaras trampa pueden 
ayudar en la detección de especies no nativas. Sin embargo, la responsabilidad de gestionar las imágenes y los recursos que 
se requieren para acceder a las cámaras de forma regular para recolectar las imágenes, incrementan los costos y extienden 
el período de latencia entre la detección de animales invasores y la respuesta del gestor. En este trabajo, describimos una 
red de cámaras inalámbricas en la Isla Santa Cruz (“SCI”, por sus siglas en inglés) que permitió la transferencia instantánea 
de las imágenes de las cámaras desde los sitios remotos hasta “la nube”. La clasificación inicial de imágenes mediante 
aprendizaje automático permitió que los revisores humanos priorizaran el análisis de fotos de posible preocupación. La 
comparación de las predicciones de la “IA” y las etiquetas de imágenes validadas por humanos confirmó que los modelos 
de aprendizaje automático tenían una alta tasa de recuperación (o una baja tasa de falsos negativos) para secuencias de 
imágenes que contenían roedores. Las comparaciones con un sistema previo de cámaras basado en tarjeta SD en la “SCI” 
revelaron mejoras significativas en la frecuencia y fiabilidad de la revisión de datos, mejorando así la probabilidad de 
detección rápida de especies no nativas. A pesar del mayor costo inicial  de los equipos, las cámaras colocadas en red 
resultaron ser rentables a lo largo del tiempo, consiguiendo mejores resultados que los métodos tradicionales. Las iteraciones 
futuras de la red podrían hacer uso de las redes celulares o satelitales para tener una amplia escalabilidad, mejorando los 
esfuerzos de bioseguridad y conservación general en islas y otros sitios protegidos vulnerables. 

mailto:lara.brenner@tnc.org


established population of invasive species (Matos 
et al. 2018, Faulkner et al. 2020). Capitalizing on 
new technologies (e.g., machine learning, internet 
of things (IoT), and cloud-based computing) can 
improve the efficiency of biosecurity programs 
by enabling some automation of monitoring pro-
tocols like camera trapping (Jurdak et al. 2015). 
    Camera traps are commonly used biosecurity 
management tools on islands and can aid in the 
early detection of nonnative vertebrates (Davis 
et al. 2023). Cameras with passive infrared 
(PIR) sensors have been used in the detection of 
a wide variety of small- to medium-bodied, fast-
moving, and cryptic invasive endotherms on 
islands worldwide, including rats (Rattus spp.), 
house mice (Mus musculus), cats (Felis catus), 
European rabbits (Oryctolagus cuniculus), and 
raccoons (Procyon lotor) (Anton et al. 2018, 
Lamelas-López and Salgado 2021, Louppe et al. 
2021, Nichols et al. 2022). Timely assessment of 
the images is crucial when using camera traps 
for early detection, especially when targeting 
taxa with rapid generation times (e.g., rodents) 
or when a single individual can cause significant 
harm in a short period following introduction 
(e.g., an animal carrying a novel disease agent) 
(Timm et al. 2009, Matos et al. 2018). 
    Although cameras are a useful tool in the 
biosecurity toolkit, the relatively high start-up 
costs of professional-grade camera equipment, as 
well as the ongoing time and labor requirements 
to retrieve data and maintain systems in remote 
and often logistically challenging areas, can be 
barriers to large-scale adoption of camera moni-
toring networks (Wearn and Glover-Kapfer 2019). 
The resource-intensive nature of reviewing, 
managing, and storing large quantities of data 
generated by camera monitoring may be even 
more challenging than maintaining field deploy-
ments, especially when cameras are left in place 
for long periods (Young et al. 2018). For this 
reason, the use of cameras in a biosecurity context 
is often limited to short-term deployments for 
rapid assessment of species assemblages before, 
during, or after an eradication effort. 
    Although evaluating the efficacy of an eradi-
cation is crucial, it is equally important that 
island managers sustain long-term prevention and 
monitoring efforts at a sufficient scale to protect 
the (often substantial) investment directed at the 
initial eradication (Towns and Broome 2003). 
This is especially true for frequently visited, 
nearshore islands with a relatively high likelihood 
of reinvasion (Harris et al. 2012); for example, 

on Anacapa Island in the California Channel 
Islands National Park, a black rat (Rattus rattus) 
eradication effort cost 1.8 million USD (over 
3 million USD in 2024, adjusted for inflation) to 
complete in 2002 (Howald et al. 2010). 
    Until recently, technological limitations made 
it difficult to continuously monitor remote islands 
for invasive vertebrate (re-)establishment, mak-
ing rapid response in the event of an invasion 
unlikely or impossible. Traditional detection 
devices like chew cards, tracking pads, or trail 
cameras that store photos locally on memory 
cards (hereafter referred to as “SD-card cam-
eras”) must be visited on a regular basis to reduce 
the latency period between an animal interacting 
with the device and a manager becoming aware 
of the interaction, a level of engagement that can 
be difficult to maintain in remote areas over the 
long term. Additionally, battery failure, SD-card 
corruption, and other malfunctions often go unno-
ticed between human visits, leading to gaps in 
data collection that can be devastating in early 
stages of colonization (Russell et al. 2008a). 
    Here, we describe a system piloted on Santa 
Cruz Island for the instantaneous remote detection 
of nonnative mammals, and we assess efficiency 
gains attained by using wireless, networked 
cameras with the ability to upload images in real 
time to the cloud for immediate review and AI-
assisted classification. 
 

METHODS 

Study Site 
    At 97 square miles in land area, Santa Cruz 
Island (SCI) is the largest of the 8 California 
Channel Islands, and it is located approximately 
20 miles off the coast of Santa Barbara County, 
California. SCI is comanaged by The Nature 
Conservancy (TNC), which owns the western 
76% of the island, and the National Park Service 
(NPS), which owns the eastern 24%. A conces-
sionaire ferry provides public transport to areas 
that are open for recreation, while the coastline 
and beaches across SCI are accessible to private 
boaters with a landing permit. Bulk cargo is 
transported to the island by barge, and commer-
cial fishing vessels frequently operate outside of 
designated marine sanctuaries around the island. 
The Santa Barbara Channel is a major shipping 
lane for international container ships bound for 
ports across the Pacific Ocean, including nearby 
Port Hueneme in Oxnard and the Port of Los 
Angeles in San Pedro. 
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    SCI is home to 4 native terrestrial mammals 
(excluding bats); namely, the island fox (Urocyon 
littoralis santacruzae), the island spotted skunk 
(Spilogale gracilis amphialus), the island deer 
mouse (Peromyscus maniculatus santacruzae), 
and the western harvest mouse (Reithrodontomys 
megalotis) (Schoenherr et al. 1999). SCI and the 
surrounding islands in the Channel Islands 
archipelago are also home to a number of sensi-
tive endemic landbirds, herpetofauna, and plants 
with known vulnerability to invasive species. 
Steep cliffs, sea caves, and offshore rocks host 
breeding seabirds, including Ashy Storm-Petrels 
(Oceanodroma homochroa) and Scripps’s Mur-
relets (Synthliboramphus scrippsi), both of which 
are threatened in the state of California. 
    Nonnative mammals, including rats in the 
genus Rattus, cats, dogs, and raccoons, are not 
established on Santa Cruz Island, but they 
remain active biosecurity concerns due to their 
presence at high densities on the nearby main-
land and the likelihood of accidental transmission 
by human activity. Within the Channel Islands 
archipelago, rats have successfully invaded and 
become established on San Miguel, Santa Cata -
lina, San Clemente Island, and Anacapa Island 
(but recently eradicated from the latter). Private 
boats and cargo vessels have transported stow-
away cats and racoons to some islands in the 
archipelago, and visitors have occasionally trans-
ported domestic dogs to SCI, which both pose a 
disease transmission threat to the endemic island 
fox population (Timm et al. 2009, King et al. 
2014, Hoyer and Ferrara 2020). 

SD-Card Cameras 
    In 2011, early rodent detection protocols were 
piloted on Santa Cruz Island, involving 15 SD-
card-based passive infrared (PIR) cameras and 
chew cards deployed at 70 rotating sites across the 
island (Boser et al. 2014). In 2018, the SCI bio -
security camera fleet was downsized to 10 per-
manent SD-card cameras (Hyperfire HC500, 
Reconyx, Holmen, WI) to reduce labor costs 
required for regular maintenance. Long-term 
monitoring sites were selected based on island 
visitation trends and ease of overland access. 
Cameras were installed approximately 1  yard 
above the ground on a post angled at 15° toward 
a bait station 1–2 yards away. Bait stations 
consisted of a brick, with stripes at 1 inch intervals 
for scale, that was smeared with lure (Lenon’s 
Muskrat Super All Call, Animal Traps and Sup-
plies, Traverse City, MI). Upon being triggered 

by motion and heat, cameras were set to take a 
burst of 3 images with “high” sensitivity, no delay 
between photos (“RapidFire”), and no quiet 
period. Five of the 10 cameras were serviced 
on an approximately monthly basis, while the 
remaining 5 were in more remote locations and 
were serviced on an approximately quarterly 
basis when road conditions permitted. Servicing 
the cameras involved checking and replacing 
batteries, swapping data cards, replenishing lure, 
trimming overgrown vegetation, and making any 
needed repairs. At each service, staff collected 
data that included date of service, number of 
photos captured, remaining battery life (if any), 
whether the photos covered the entire period of 
deployment, and any other maintenance notes. 
Photos were manually reviewed for species of 
concern using Microsoft Photos image viewing 
software but were not labeled by species or 
otherwise cataloged due to time constraints. The 
10 SD-card cameras evaluated here were in place 
from February 2018–March 2021. 

Networked Cameras 
    By October 2021, all existing SD-card bio -
security cameras were replaced with a mesh 
network of wireless cameras (X80, BuckeyeCam 
Wireless) linked to a central base station, which 
allowed for the transmission of images from the 
cameras to the cloud in near-real time. Networked 
cameras were also deployed at several previously 
unmonitored coastal sites thought to represent 
areas of relatively high biosecurity risk, including 
4 cameras placed near housing or other sites 
with human infrastructure that might attract 
commensal mammals like rats. The cameras 
were installed at the same angle as the SD-card 
cameras that they replaced and were set to take a 
burst of 3 images with “high” sensitivity and no 
delay between motion triggers. Networked cam-
eras were lured in the same manner as SD-card 
cameras, but at some cameras we also piloted 
automated lure dispensers (https://zip.org .nz 
/products-list /motolure, ZIP, Wellington, New 
Zealand) that rebaited traps nightly for up to a 
year with a small amount of mayonnaise stored 
in a syringe within the device. 
     The wireless camera network comprises 3 types 
of components, or “nodes”: (1) PIR wireless cam-
eras; (2) radio repeaters (Echo, BuckeyeCam 
Wireless) that relayed the radio frequency (RF) 
signal to extend range and circumvent challeng-
ing topography; and (3) a base station, which 
received the radio transmissions, demodulated 
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the RF signal into digital images, and uploaded 
them to the cloud (X80 PC Base Receiver, 
BuckeyeCam Wireless; Cincoze DA-1000 fanless 
industrial computer, Cincoze Co., Ltd). The base 
station was located at a high point on the island 
with preexisting communications structures that 
served as an access point to the internet. Net-
worked cameras and repeaters used a proprietary 
radio (Digi XBee Pro, Digi International) oper-
ating in the ISM band to both upload images 
from the cameras to the cloud and download set-
tings updates from remote users to the cameras. 

Image Processing with Machine Learning 
    Once images reached the cloud, they were 
processed using Animl (https://animl.camera/, The 
Nature Conservancy, CA), a software platform 
that integrates machine learning to facilitate 
review and management of camera trap imagery. 
On Animl, images were automatically evaluated 
by Megadetector v5a (Beery et al. 2019), an 
object detection model which is trained to 
detect and localize (i.e., provide bounding-box 
coordinates for) people, animals, and vehicles 
within camera trap images. Objects labeled as an 
“animal” by Megadetector were further evaluated 
by a custom wildlife classifier (MIRA) trained 
on Santa Cruz Island camera trap data and 
labeled as “rodent,” “fox,” “skunk,” “bird,” or 
“lizard.” Any images labeled as “rodent” were 
reviewed within 24 h by biologists for species 
determination, while other images were reviewed 
by volunteers or staff as time allowed (See 
Fig. 1). For each of the native mammal classes, 
we calculated the number of images captured 
during the period of this study and the average 
time to first detection on camera traps. 

Data Gaps and Detection Latency Analysis 
    We used data collected by technicians and 
photo timestamps to assess the number, length, 
and causes of gaps in data monitoring for both 
networks. We also evaluated the average num-
ber of days between the first day of camera 
(re-)deployment and the date when SD cards 
were retrieved (i.e., the maximum latency peri-
ods to detection in the event of a rodent incur-
sion) for all of the SD-card camera deployments. 

Calculating Start-up and Maintenance  
Cost Estimates 

    To compare start-up and maintenance costs 
between the SD-card camera system and the 

networked camera system, we calculated initial 
and recurring equipment costs for each system 
(as of 2021), as well as the average time spent 
commuting to, setting up, configuring, and servic-
ing cameras at each site. Time was converted 
into a dollar amount by multiplying person-hours 
by a fixed hourly salary. Start-up costs included 
the cost of purchasing new equipment, time 
spent installing the cameras, and travel to sites 
(in dollars per mile). Recurring annual costs 
included the costs of replacement equipment, 
time spent servicing the cameras, and travel to 
sites, which was assumed to be constant in each 
subsequent year. To standardize calculations, 
this analysis was limited to the 10 camera sites 
that did not change across the 2 deployment 
eras. In reality, SD-card cameras were not visited 
on a monthly basis due to time and staffing 
constraints; however, for the purposes of the 
analysis, we assumed an idealized monthly 
maintenance schedule that would make allow -
ances for limited resources while retaining some 
ability to detect nonnative mammals in a timely 
manner. Time spent reviewing photos was not 
compared between systems, as labeling of images 
was only introduced after the installation of the 
networked system and with the support of Animl. 

Machine Learning Performance Evaluation 
    In order to understand the combined perfor-
mances of the 2 machine learning algorithms 
employed in this system (the object detector 
“Megadetector v5a” and the animal classifier 
“MIRA v2”), we evaluated a subset of images 
(n = 30,655) captured over a 13-month period 
after the SCI-specific model had been retrained 
and refined on a larger dataset of biosecurity 
camera images. For each of the 5 animal cate-
gories (“rodent,” “skunk,” “lizard,” “fox,” and 
“bird”), we calculated the number of true posi-
tives (TP, where a human validated the labels 
applied by both Megadetector and MIRA), false 
negatives (FN, where a human added or changed 
the label after either Megadetector or MIRA 
failed to identify the animal), and false positives 
(FP, where a human removed or changed the 
label after either MIRA v2 incorrectly identified 
that the animal was present when it was actually 
absent). Because we were jointly evaluating an 
all-purpose object detector with a custom animal 
classifier, a TP meant that (a) Megadetector cor-
rectly identified the presence of an object in the 
image; (b) Megadetector correctly labeled the 
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object as an “animal”; and (c) MIRA correctly 
identified the class of animal. However, an FN 
could mean either that Megadetector failed to 
identify the animal entirely or that MIRA applied 
an incorrect class label. Finally, an FP meant 
that MIRA applied an incorrect class label either 
to an animal or to an object that Mega detector 
incorrectly identified as an animal. 
    We aggregated the predictions at the level of 
the sequence (or series of photos captured fol-
lowing a single trigger, typically within 2–3 s), 
and considered predictions to be true positives 
if an animal was correctly predicted in any of 
the images in a given sequence, even if models 
failed to detect or misclassified the animal else-
where in the sequence. 
    We then calculated model precision, or the 
proportion of positive ML identifications that 
were actually correct, as such: 

TP / (TP + FP) . 

We also calculated model recall, or the proportion 
of actual positives that were correctly identified, 
as such: 

TP/ (TP + FN) . 

For each category, we also calculated the F1-
score, which is an integrated metric of precision 
and recall that captures overall model perfor-
mance, as such: 

(2 * Precision * Recall) / (Precision + Recall) .  
 

RESULTS 

SD-Card Cameras 
    Between February 2018 and March 2021, 
SD-card cameras captured 326,387 images over 
9424 total possible operating days. In 20 separate 

instances, monitoring gaps with permanent data 
loss occurred when the batteries were drained 
after vegetation or shadows continuously triggered 
the camera (n = 5), batteries failed for unknown 
reasons (n = 5), SD cards malfunctioned (n = 5), 
cameras fell or infrastructure otherwise failed 
(n = 2), cameras were tampered with (n = 1), or 
for unspecified reasons (n = 2). In total, 911 out 
of 9424 (10%) possible operating days were not 
monitored due to equipment failure. On average, 
SD-card cameras captured 38.3 photos per camera 
per operating day, and camera data cards were 
retrieved and made available for review once 
every 56.5 days on average (range 12–129 days; 
SD = 31.4). 

Networked Cameras 

    Between October 2021 and March 2023, the 
10 replacement networked cameras captured 
66,699 images. One camera went offline for 
almost 7 months after vegetation growth blocked 
the antenna’s line of sight to the base station, 
leading to a loss of 210 out of 5460 total possible 
operating days (4%). Thus, on average, networked 
cameras captured 12.7 images per camera per 
operating day. Networked cameras successfully 
captured images of all native SCI terrestrial 
mammals, with average sampling days to first 
detection ranging from 20.7 days for island 
foxes (SD = 57.4) to 38.1 days for island mice 
(SD = 63.1) and 151.0 days for island spotted 
skunks (SD = 113.6). Mice and foxes were 
eventually detected at all 10 sites, while spotted 
skunks were detected at 8 of 10 sites. In addition 
to the taxa listed in Table 1, photos of domestic 
dogs (n = 20), insects (n = 12), and bats (n = 2) 
were also collected. 
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    Fig. 1. Diagram illustrating the process by which images of invasive alien species (IAS) are relayed in real time to the 
cloud and reviewed by AI.  



Camera Startup and Maintenance  
Cost Comparison 

    Start-up costs for the networked cameras were 
estimated to be $24,237, around 3.5× higher than 
the startup costs for the original SD-card-based 
camera network (see Table 2). During the instal-
lation, total travel required was slightly higher for 
the wireless camera network due to the necessity 
of installing a base station and 6 repeaters in 
addition to the cameras themselves. 
    Annual maintenance costs for the SD-card 
camera network were estimated to be $7842, 
nearly 9× higher than the annual costs incurred 
by maintaining the wireless camera network. 
(see Table 3) This differential was primarily due 
to the high labor and travel costs incurred by 
visiting the SD-card cameras on a monthly basis 
to retrieve memory cards. The break-even point 
occurred after 20 months of use, when the wire-
less camera network became more cost-effective 
than the SD-card cameras, even considering 
relatively high start-up costs (see Fig. 2). 

Machine Learning Performance Evaluation 
     Performance of the 2 machine learning mod-
els varied widely by animal category. Model 
precision was lowest for skunks (18.3%, indicat-
ing a relatively high rate of false positives) and 
recall was lowest for lizards (60.3%, indicating 
a relatively high rate of false negatives). Model 
precision and recall were both highest for 
rodents (99.8% and 93.4%, respectively), indi-
cating relatively low rates of both false positives 
and false negatives for this category, with high 
overall model performance (See Table 4). 
 

DISCUSSION 

Camera System Comparison 
    Networked cameras captured images of all 
terrestrial mammals native to SCI, as well as 
images of domestic dogs brought to the island 
by visitors. On average, networked cameras 
captured fewer images per day than SD-card 
cameras (12.2 vs. 34.6 photos per camera per 
day). This may be due to differences in baiting 
regimes attracting fewer animals, different trig-
ger sensitivities across camera models, or a lower 
rate of false triggers in networked cameras. 
Real-time data allowed managers to immediately 
notice excessive photos triggered by overgrown 
vegetation, wind, or shadows and either remotely 
adjust settings or visit the camera to remove the 
source of the trigger. In contrast, high rates of 
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false triggers in SD-card cameras went unno-
ticed until the data card was reviewed, meaning 
that in the most extreme cases, a single card was 
filled with tens of thousands of empty images 
after a single month of deployment. 
    Because photos collected by SD-card cameras 
were not labeled, we were unable to compare the 
contents of images captured between systems. 
However, compared to results of biosecurity 
camera trapping on SCI conducted using the same 
methods (Boser et al. 2014), networked cameras 
captured relatively fewer empty photos (50% of 
the total photos versus 68%), more photos of 
deer mice (28% versus 4%) and herpetofauna 
(14% versus <1%), and relatively fewer photos 
of island foxes (16% versus 60%). This may be 
due to differences in camera placement, baiting 
regimes, interannual environmental variability, 
long-term environmental change, or all of the 
above. 

    With annual maintenance, networked cameras 
were generally reliable, and during the period 
evaluated here only 4% of total monitoring days 
were effectively unmonitored due to equipment 
failure, compared to around 10% of monitoring 
days in SD-card cameras (even with much more 
frequent maintenance). Thus, for long-term 
(>20-month) deployments, we found that net-
worked, wireless cameras were more cost-
effective than SD-card cameras, despite higher 
initial costs. Cost savings over time increased 
with the duration of deployment. We did not 
consider the cost of replacement networked 
camera equipment in the annual maintenance 
costs, as the short duration of this initial study 
(<2 years) was not enough time to evaluate 
equipment lifespans and failure rates. These 
should be considered when refining cost estimates 
over time, as the manufacturers of both camera 
models used in this study offer only short-term 
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    TABLE 2. Start-up cost comparison between networked and SD-card cameras. Equipment costs were as of 2021, while 
labor costs were estimated at $45/h. Travel costs were estimated to be roughly double the standard U.S. government 
mileage reimbursement in 2021 ($0.65) to account for additional costs of shipping fuel to the island and wear and tear to 
vehicles operating on 4-wheel-drive roads.  
Startup costs                                                                       Cost (per unit/h)              Number (units/h)                         Total  
Networked cameras 
    Cincoze DA-1000 field computer                                            $993                                     1                                       $993 
    Buckeye ×80 base station receiver                                          $675                                     1                                       $675 
    Antenna and cable for base station                                          $360                                     1                                       $360 
    Buckeye ×80 cameras                                                            $1110                                   10                                  $11,100 
    Buckeye ×80 repeaters                                                             $460                                     6                                     $2760 
    Buckeye ×80 batteries and solar panel                                    $330                                   16                                     $5280 
    Mounting hardware                                                                    $30                                   16                                       $480 
    Labor                                                                                          $45                                   55                                    $2,475 
    Travel                                                                                      $1.30                                   88                                       $114 
    NETWORKED CAMERA STARTUP TOTAL                                                                                                                       $24,237 
SD-card cameras 
    Reconyx Hyperfire HC500                                                      $450                                   10                                     $4500 
    32 GB SD card (2-pack)                                                             $20                                   10                                       $200 
    Rechargeable AA batteries (24 pack)                                        $65                                   10                                       $650 
    Mounting hardware                                                                    $30                                   10                                       $300 
    Labor                                                                                          $45                                   27                                     $1197 
    Travel                                                                                      $1.30                                   70                                         $91 
    SD-CARD CAMERA STARTUP TOTAL                                                                                                                               $6938  

    TABLE 3. Annual maintenance cost comparison between networked cameras and SD-card cameras.  
Annual maintenance costs                                                               Cost (per unit/h)         Number (units/h)                  Total  
Networked cameras (1.15 visits per camera per year) 
    Labor                                                                                                       $45                              17                               $765 
    Travel                                                                                                   $1.30                            101                               $131 
    NETWORKED CAMERA ANNUAL MAINTENANCE TOTAL                                                                                                      $896 
SD-card camera (12 visits per camera per year) 
    Labor                                                                                                       $45                            150                             $6750 
    Travel                                                                                                   $1.30                            840                             $1092 
    SD-CARD CAMERA ANNUAL MAINTENANCE TOTAL                                                                                                         $7842  



(<1-year) warranties for failing equipment. 
Because most of the cost savings returned by the 
networked cameras derived from the reduction 
in labor cost, organizations relying primarily on 
volunteers for camera servicing and maintenance 
may not realize the same level of efficiency 
gains as reported here. However, regardless of 
absolute labor costs, automation of routine field-
work on remote islands is likely to result in cost 
savings over time.  

Image Processing with Machine Learning 
    Technological advances and efficiency gains 
realized by the networked cameras allowed us to 
incorporate image labeling into our workflow. 
Automatic image upload to and storage on the 
cloud-based Animl platform allowed us to 
recruit off-site volunteers to review and label 

images, reducing staff labor requirements. The 
filter, sort, and query functionality of the Animl 
platform facilitated maintenance of a structured, 
downloadable dataset, which introduced the 
possibility of developing a long-term database 
of native mammal detection and distribution on 
SCI, creating and training data for improving a 
species classification model over time, and 
enabling new scientific insights into native wild -
life behavior, activity, and distribution. 
    Although we did not attempt a cost-benefit 
analysis of integrating AI classification into our 
image review workflow, the addition of an 
island-specific classifier allowed us to prioritize 
review of images of rodents, likely reducing 
time to detection in the event of a rat incursion. 
Our evaluation of classifier recall indicated that 
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    Fig. 2. Cumulative costs of networked cameras versus SD-card cameras year-over-year in dollar amounts (left axis) and 
labor in hours (right axis). 

    TABLE 4. Model precision, recall, and F1 score for each animal category in MIRA v2, aggregated at the sequence level.  
                              True                  False                False                    All                                                                              
Label                  positives            positives          negatives          (TP + FN)           Precision              Recall                   F1  
Rodent                18,880                     37                 1339                 20,219                 0.998                  0.934                  0.965 
Skunk                      109                   487                     13                      122                 0.183                  0.893                  0.304 
Lizard                      597                 1073                   393                      990                 0.357                  0.603                  0.449 
Fox                          740                   892                     15                      755                 0.453                  0.980                  0.620 
Bird                       3977                   977                 1136                    5113                 0.803                  0.778                  0.790  



Megadetector and MIRA correctly identified 
rodents in 93% of sequences that contained at 
least 1 image of a rodent. This low rate of false 
positives was likely facilitated by training 
datasets intentionally biased toward images of 
rodents, the taxa of concern from a biosecurity 
perspective. A high recall rate increased our 
confidence that the vast majority of rodent 
sequences were correctly labeled by AI, facili-
tating a workflow in which rodent-labeled 
images could be safely prioritized for immediate 
review. MIRA was trained on images of native 
SCI deer mice, and barring an incursion, preci-
sion and recall for images of nonnative rats on 
SCI cannot be formally evaluated. However, 
based on experience deploying these models on 
mainland camera trap imagery containing rats, 
we anticipate that MIRA would perform well in 
the event of a Rattus sp. detection on SCI. 
Megadetector v5a is a free, open-source model 
provided by Google, and the custom SCI classi-
fier MIRA was developed for $13,430 in 2019. 

Considerations and Future Directions 
    Although long-term costs for maintaining 
networked cameras approached $33,000 over 
10 years, early detection efforts such as these 
are more cost-effective than an island-wide 
eradication or ongoing local rat control following 
an invasion, both of which can easily run into 
the millions or tens of millions of dollars 
depending on the size of the island (Duron et al. 
2017). Early detection devices such as camera 
traps are typically deployed with the under-
standing that an invasive species detection will 
result in a rapid management response to curb 
an invasion. If logistical, legal, or policy consid-
erations are likely to limit a managing agency’s 
ability to act quickly in the event of a rat or 
other native mammal incursion, the value of 
early detection devices is diminished (Russell 
et al. 2008b). 
    While the wireless camera network described 
here relied on a radio protocol to transmit images 
to the cloud, similar models can be developed 
and scaled up using cellular networks or high-
bandwidth satellite internet (e.g., Starlink). The 
specific hardware solution required may differ 
depending on the characteristics of the environ-
ment where the cameras are deployed, including 
terrain, cell connectivity, internet availability, 
and satellite coverage, as well as budget and 
project timeline (see Table 5). Biosecurity camera 

networks that we have piloted outside of SCI 
have required varying solutions to deal with 
challenges unique to each project and study 
area. On Nonsuch Island, which regularly expe-
riences rat incursions from nearby islands of 
Bermuda (Madeiros 2005), an existing internet 
connection facilitated the installation of a small-
scale Buckeye camera network that was installed 
with reinforcements to protect the devices 
from seasonal hurricane winds. On preserves in 
Hawai’i, we worked with managers to deploy a 
patchwork of different camera types, including 
radio-linked and cellular cameras, that took 
advantage of existing deployments, varying 
terrain, and internet and cellular availability. At 
one such preserve, this network allowed man-
agers to respond to a feral cat detection near a 
predator-proof fence within 24 h, a process 
that would normally take weeks (Pacific Rim 
Conservation, personal communication). 
    Real-time camera networks that incorporate 
AI image labeling can also be readily adapted to 
address other conservation needs that necessitate 
continuous monitoring and rapid response—for 
example, poaching, oil spill response, trespassing, 
incursions to predator exclosures, preventing 
human-wildlife conflict, and monitoring live 
traps. Even if real-time responses are not strictly 
required, these camera systems can increase 
efficiency of traditional species monitoring 
efforts—such as understanding endangered 
species distributions, habitat associations, and 
abundance over time. 
    Early detection of nonnative mammal incur-
sions is a concern and priority shared by wider 
Channel Islands and California Islands land 
managers. Remote cameras deployed at docks 
for the National Park Service and concessionaire 
vessels demonstrated that rats, opossums, cats, 
and raccoons are present at key departure points 
to SCI. Thus, islands and portions of islands 
that experience high visitation could benefit 
from the implementation of networked camera 
traps like those described above to assist in the 
rapid detection of invasive mammals after unin-
tentional introductions. In combination with a 
suite of other detection methods and a strong 
focus on mainland-based preventative measures 
(including education), networked biosecurity 
cameras that incorporate machine learning can 
improve the efficacy of early detection measures 
and should be considered part of any island 
biosecurity toolkit. 
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